가장 인기있지만 3박자가 맞아야 하는 조절된 조절이다. 첫박은 이론적으로 근거가 막강하게 가설을 잡아야 하고 둘째로 데이터 수집도 말끔하게 해야 하며 마지막으로 이상한 표본도 없거나 effect가 표본수 대비 충분해 줘야 하는 것 같다.
데이터 부터 만들어 보자.
x<-rnorm(100)
w1<-rnorm(100)+ x^2
w2<-rnorm(100)+ abs(x)
y<-rnorm(100, 0,1) + w1*w2*x
co1<-rnorm(100)
d<-data.frame(x,w1,w2,y,co1)
boot3<-function(xxx,mmm, mmm2,yyy,d,bootnum){
###estimate a*m
boot3_1<-function(xxx,mmm,mmm2, yyy,d){
n<-sample(1:nrow(d),nrow(d),replace = T)
nnk<-d[n,]
nnk<-as.data.frame(nnk)
k2<-lm(nnk[,yyy]~ nnk[,xxx]+nnk[,mmm] + nnk[,mmm2]+ nnk[,xxx]*nnk[,mmm] + nnk[,xxx]*nnk[,mmm2] + nnk[,xxx]*nnk[,mmm]*nnk[,mmm2], data=nnk)
s2<-summary(k2)
coem<-s2$coefficients
eff<-as.data.frame(coem)
eff1<-eff[nrow(eff)-2,1]
eff2<-eff[nrow(eff)-1,1]
eff3<-eff[nrow(eff),1]
efff<-c(eff1, eff2, eff3)
efff<-matrix(efff, ncol = 3)
efff
}
k<-1
l<-matrix(rep(NA,bootnum*3),ncol = 3)
l<-as.data.frame(l)
repeat{
l[k,]<-boot3_1(xxx,mmm, mmm2,yyy,d)
k<-k+1
if(k>=bootnum+1) break
}
estimates<-list(l)
ci1<-quantile(l[,1],probs = c(.001,0.01,0.05,0.10,0.90,0.95,0.99,.999))
ci2<-quantile(l[,2],probs = c(.001,0.01,0.05,0.10,0.90,0.95,0.99,.999))
ci3<-quantile(l[,3],probs = c(.001,0.01,0.05,0.10,0.90,0.95,0.99,.999))
kmkmkmkm<-list(c(mean(l[,1]),sd(l[,1])),ci1, c(mean(l[,2]), sd(l[,2])),ci2,
c(mean(l[,3]),sd(l[,3])),ci3)
names(kmkmkmkm)<-c("moderation_mean_BootSE_x*w1", "moderation_CI_x*w1","moderation_mean_BootSE_x*w2", "moderation_CI_x*w2", "moderation_mean_BootSE_x*w1*w2", "moderation_CI_x*w1*w2")
kmkmkmkm
}
막 만든 데이터라 유의하지 않다.
boot3(1,2,3,4,d,1000)
$`moderation_mean_BootSE_x*w1`
[1] 0.9347755 0.1685584
$`moderation_CI_x*w1`
0.1% 1% 5% 10% 90% 95% 99% 99.9%
0.4957663 0.6142070 0.6843268 0.7289439 1.1602119 1.2217586 1.4037690 1.5743151
$`moderation_mean_BootSE_x*w2`
[1] 0.007263357 0.059032701
$`moderation_CI_x*w2`
0.1% 1% 5% 10% 90% 95% 99% 99.9%
-0.24961595 -0.15938998 -0.09916184 -0.07266851 0.07595744 0.08879090 0.13960394 0.17953389
$`moderation_mean_BootSE_x*w1*w2`
[1] -0.01454421 0.07065602
$`moderation_CI_x*w1*w2`
0.1% 1% 5% 10% 90% 95% 99% 99.9%
-0.31850929 -0.23549835 -0.15771775 -0.10560361 0.05762863 0.07463888 0.10941380 0.15503864
'기타 잡기장' 카테고리의 다른 글
연속형 변수 ~ 범주형 변수(외래관광실태조사) (0) | 2022.12.05 |
---|---|
hayes model 5(조건부 직접효과) (0) | 2022.11.30 |
hayes model 4(매개모형) (0) | 2022.11.30 |
hayes model 2 (0) | 2022.11.28 |
Hayes Model 1 (0) | 2022.11.27 |
댓글